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Practical implementation of multivariate calibration models has been limited in several areas due to
the requirement of appropriate development and validation to prove their performance to standardiza-
tion agencies. Herein, a detailed description of the application of multivariate calibration based on
partial least-squares regression models (PLSR) for the determination of soluble solids (BRIX),
polarizable sugars (POL), and reducing sugars (RS) in sugar cane juice, based on near infrared
spectroscopy (NIR), for the alcohol industries is presented. The development of the models, including
variable selection and outlier elimination, and their validation by determination of figures of merit,
such as accuracy, precision, sensitivity, analytical sensitivity, prediction intervals, and limits of detection
and quantification, are described for a representative data set of 1381 sugar cane samples. Values
estimated by PLSR are compared with appropriate reference methods, where the results indicated
that the PLSR models can be used in the alcohol industry as an alternative to refractometry and lead
clarification before polarization measurements (standard methods for BRIX and POL, respectively).
For RS, the results of a titration reference method were compared with the PLSR estimates and also
with an estimate based on BRIX and POL values, as actually used in the alcohol industry. The PLSR
method presented a better agreement with the titration method. However, the results indicated that
the RS estimates from both PLSR and those based on the BRIX and POL values, actually used,
should be improved to a safe determination of RS.
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INTRODUCTION

The industrial production of alcohol (ethanol) in Brazil can
be considered an important and strategic area due its applicabil-
ity as an alternative and less polluting fuel (1, 2). Its production
is based on cane sugar as the raw material, which presents
the advantage of constituting a renewable source of energy. The
main parameter for the calculation of sugar cane costs in the
industry is the concentration of the recoverable total sugars
(RTS), which is a function of the soluble solids (BRIX) and
the polarizable (POL) and reducing sugars (RS) (3). BRIX can
be defined as the percentage, in weight or in volume, of soluble
solids expressed as sucrose. In sugar cane juice it is a
quantitative measurement of the total solids (including all
sugars), not giving any qualitative information about which
sugars are present (3). Different from BRIX, POL is a
measurement of the amount of sucrose in the mixture of sugars,
because sucrose diverts the plane of polarized light. RS are
considered to be glucose and fructose, since these sugars have
the property of reducing copper from the Cu2+ state to
Cu+ (3–5). The standard methods usually employed for deter-

minations of the parameters mentioned above are densitometers,
saccharimeters, and oxidation–reduction titration for BRIX,
POL, and RS, respectively (3). However, due to the huge amount
of sampling that is necessary to be carried out for each specific
grower, according to the harvested area, to establish the
payment, the determination of RS is not feasible and, in practice,
it is just estimated using an equation that takes into consideration
the BRIX and POL parameters (3, 4).

Alternative methods for cane juice analysis have been
investigated and tested with the aim to increase the reliability,
uniformity of the method, and also the accuracy of the
determinations (3, 5–7), which would make possible a better
evaluation of the raw material and the sugar cane growers’
payment. For RS determination, flow injection analysis has
already been described and presented good agreement with the
reference methods. However, these methods were not validated
with a representative number of samples in a test set (6, 7).
Recently, the implementation of near-infrared spectroscopy
(NIR) in some alcohol industries with the aim of simultaneously
determining these three parameters with only one spectrum has
been accomplished by applying partial least-squares regression
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(PLSR). PLSR methods have the very useful property of
possibility the determination of an analyte in situations where
a selective signal is not possible to be obtained (8). The
performance of methods applying these models has already been
confirmed in several applications in diverse areas, such as
pharmaceutical (9–11), food (12–14), environmental (15–17),
and biological (18–20) analysis, and recently their acceptance
by official organs such as the American Society for Testing
Materials (ASTM) (21) and the United States Pharmacopoeia
(22) was achieved. However, for successful application for
routine analysis, an appropriate validation is necessary to certify
the prediction ability of the model, which is based on a
determination of figures of merit.

On the basis of the official regulations of the sugar cane
industry (3), the PLSR method should be validated. However,
only the requirements for the number of samples used in a test
set, which should be larger than 300, and the accuracy obtained
by the model are mentioned, and no other information of how
the calibration model should be developed is given. On the basis
of the great importance of these properties in the sugar cane
industries and the lack information in of the regulation to
indicate the appropriate development and validation of a
multivariate calibration model, this work presents a detailed
description of the development and validation of PLSR models
for determination of these properties based on NIR measure-
ments. A previous paper (23) has already reported the deter-
mination of these parameters based on the full NIR spectra. In
this paper, the procedures used for variable selection, identifica-
tion of outlier samples in both calibration and test samples, the
validation of the model based on figures of merit such as
sensitivity, analytical sensitivity, selectivity, confidence intervals,
precision at the level of repeatability, accuracy, limit of
detection, and quantification are described and the model results
are compared with reference values obtained by the standard
methods to confirm the applicability of the proposed methodolo-
gies. For comparison, the results obtained using the RS estimated
based on the equation that uses BRIX and POL values is
presented, and this estimate is compared with the titration and
NIR results, showing that the PLSR NIR model is better than
the equation actually used for the industry for determination of
this parameter.

MATERIALS AND METHODS

Experimental Measures. The experimental measurements of this
work were carried out at an alcohol plant, Cocamar-Cooperativa
Agroindustrial, located in São Tomé in the state of Paraná in Brazil.
Ripe sugar cane arrives at the production unit transported by trucks
and is sampled by a horizontal probe, ground, and taken to the
laboratory. If the samples are of green sugar cane, for preharvest
analysis, they are collected from the field by specialized technicians,
ground at the factory, and taken to the laboratory. In the laboratory,
the samples were pressed to 250 kgf/cm2 in a hydraulic press for a
period of 1 min, resulting in the cane juice for subsequent analyses.

NIR spectra were collected by using a NIRSystem spectrometer,
model 5000, equipped with a monochromator, a tungsten filament
source, a quartz cuvette having a 1 mm of optical path, polystyrene
plate as internal reference, and a PbS detector using 32 scans.
Acquisition of the spectra was accomplished in the range of 1100–2500
nm by using ISIScan software. Before spectra acquisition, the samples
were filtered through cotton to eliminate suspended particles.

A total of 1381 samples of sugar cane juice were used in this work.
Each sample was submitted to conventional analysis and the results
were used as reference values for model development. The BRIX values
were obtained directly, using a digital densimeter with a precision of
0.01 °Brix. For POL measurements, the cane juice was initially cleared
with lead sub-acetate (Pb(CH3COO)2 ·Pb(OH)2) and filtered through

paper. The sample was analyzed in a digital saccharimeter with a
precision of 0.01 units. The degree of polarization of the sample,
expressed as percent juice, was calculated based on the saccharimetric
reading (SR) and equation 1 (3).

POLref ) SR[0.2605- 0.0009882(BRIX)] (1)

where BRIX in eq 1 is expressed as percent juice and the others terms
are appropriate scaling factors.

For RS determination, the standard methodology used for quantifica-
tion via analysis was proposed by Eynon and Lane (3, 4), which consists
of the oxidation–reduction titration of the Fehling liqueur by the filtered
cane juice. The titration reaction consists of the reduction of Cu2+ to
Cu2O from the Fehling solution by the glucose and fructose present in
the juice. The RS quantity, also expressed as percent juice, present in
each sample was obtained by eq 2, taking into consideration the standard
volume used in the titration of the Felhling liqueur solution of 1.0%
inverted sugar and the BRIX measurement (3):

RS%juice )
[5.2096- (1.74993 SR

VS
Vs )

500 ]
25.64

VS
Vs

(0.00398 BRIX+ 0.99692)
(2)

where VS is the volume (in milliliters) of cane juice used in the titration,
Vs is the standard volume (in milliliters) of 1.0% invert sugar solution
used in the titration, and the other terms are appropriate scaling factors.

As already mentioned, by reasons of time and cost for calculation
of the sugar cane growers’ payment, RS is not determined via analysis
in practice but is just estimated (also expressed in percent juice) by an
equation (eq 3) that takes into consideration the BRIX and POL
parameters (3):

RSest ) 9.9408- 0.1049( POL
BRIX)100 (3)

For analysis, the 1381 samples were split into calibration and
validation sets by the Kennard–Stone algorithm (24). The calibration
set was composed of 1003 samples and the validation set was composed
of 378 samples. Mean centered spectra were used for data preprocessing,
followed by the elimination of an intense band in the region of 1900
nm (1890–2046 nm), due the water absorption (25). All calibration
models for BRIX, POL, and RS parameters were developed using
Matlab software version 6.5 and the PLS-Toolbox version 4.0 from
Eigenvector Research, Inc. (26). Variables selection was accomplished
through an interval PLSR (iPLSR) program, version 2.1, for Matlab,
developed by Jesper Madsen Wagner, from the Royal Veterinary and
Agricultural University of Denmark (27). The figures of merit of the
models developed were calculated by homemade routines written in
the Matlab environment.

Multivariate Calibration. Partial Least-Squares Regression
(PLSR). The PLSR model has been discussed in detail in relevant
references (28–30), thus only a brief description is presented here. The
data matrix X is formed by the near-infrared spectra of the sugar cane
juice and the vector y contains the reference values for each property
of interest. One PLSR model for each property was built, and the
outliers were identified and eliminated for each model.

In standard PLSR the relationship between the data matrix X and y
is represented as a linear algebraic relation between their scores. The
scores are obtained by decomposing the data matrices into a sum of
rank one-component matrices (28–30).

X)TPT +E) ∑
i ) 1

A

tipi
T +E (4)

y)TqT + f) ∑
i ) 1

A

tiqi
T + f (5)

where the E and f contain those parts of X and y, respectively, which
are not explained by the model. Vector ti,, which comprises the columns
of T, is called the score vector, pi and qi are called the loading, and A
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is the number of latent variables used for model development. Estimates
for the interest property (ŷ) for a set of samples are obtained by
multiplication of the NIR spectra by an appropriate regression vector
(b), expressed as (28–30):

ŷ)TqT )XW(PTW)-1qT )Xb (6)

where W is the weight matrix determined in the PLS algorithm.

Interval partial least-squares regression (iPLSR) is an interactive
extension of PLSR, which develops local PLSR models based on
equidistant subintervals of the full-spectrum region. Its main use is
providing an overall picture of the relevant information in different
spectral subdivisions, thereby focusing on important spectral regions
and removing interferences from other ones. The choice of the best
iPLSR model is done by comparing the prediction performance of these
local models with the global model built with the full spectrum (27).
The comparison is mainly based on the validation parameter RMSECV
(root mean squared error of cross-validation). Models based on the
various intervals usually need a different number of PLSR components
than do full-spectrum models to catch the relevant variation in y. This
condition is caused by the varying amount of y-correlated information
carried by the interval variables and is also related to the noise/
interference carried by the variables. To ensure a fair comparison of
the global and local models, it is necessary that the global and local
model dimensions be selected separately (27).

Outlier Detection. Outliers can be defined as observations showing
some type of departure from the bulk of the data. They may occur for
many different reasons, such as, laboratory error, objects from another
population, instrument error, etc. (30). Methods for their detection have
already been described in several papers (21, 30–32). The three simplest
forms to identify abnormal samples, usually recommended (30), are
based on data with extreme leverage, unmodeled residuals in spectral
data, and unmodeled residuals in the dependent variable.

Extreme LeVerages. Leverage represents how much one sample is
distant from the center of the data and can be defined as (21, 30):

hi ) tA,i
T (TA

TT)-1tA,i (7)

where T represents the scores of all calibration samples, ti is the score
vector of a particular sample, and A is the number of latent variables.

According to ASTM E1655-00 (21), samples with hi larger than a
limit value (hlimit), given by eq 8, should be removed from the calibration
set and the model rebuilt.

hlimit ) 3
A+ 1

Ic
(8)

where Ic is the number of calibration samples. Note that for models
not centered in their mean the factor 1 in eq 8 is omitted.

It is not uncommon, when extreme leverages are eliminated in a
first model and the model is rebuilt, to find new spectra with hi > hlimit.
When repetitive application of the hi > hlimit rule continues to identify
outliers, the outlier test is said to “snowball”. If “snowballing” occurs,
it may indicate some problem with the structure of the spectral data
set. In these situations, the outlier test can be relaxed (21):

(1) The first model is built on an initial calibration set.

(2) Calibration spectra with hi > hlimit are eliminated from the
calibration set.

(3) A second model using the same number, A, of variables is built
on the subset of calibration spectra and the calibration spectra with hi

> hlimit are identified for the second model. The second model could
be used providing that no calibration samples have hi greater than 0.5
(21).

Unmodeled Residuals in Spectra. Identification of outliers based on
unmodeled residuals in spectral data are obtained by comparison of
the standard deviation total residuals (s(e)) with the standard deviation
of a particular sample (s(ei)), defined as (30, 32):

s(e)2 ) 1
IcJ- J-Amax(Ic, J)∑i)1

Ic (∑
j)1

J

(xi,j - x̂i,j)2) (9)

s(ei)2 )
Ic

IcJ- J-Amax(Ic, J)∑j)1

J

(xi,j - x̂i,j)2 (10)

where J is the number of spectral variables, xi,j is absorbance value of
the sample i at wavelength j and x̂i,j is its estimated value with A latent
variables. If a sample presents s(ei) > ns(e), where n is a constant that
can vary from 2 to 3 (30), the sample should be removed from the
calibration set. In this work, the constant was optimized as 2, which
provides a good limit that could identify the samples presenting spectral
residuals significantly larger than those observed from the other samples.

All tests described above can be applied to both calibration and
validation sets. A further test appropriate to identify outliers in the
validation set, when the calibration set was already optimized, is
described in ASTM E1655-00 (21). It is based on the unmodeled
residuals of samples measured at three different levels of concentration
with seven replicates at each level and it can be used in substitution of
the test for spectral residuals.

Unmodeled Residuals in Dependent Variables. Outliers are identified
through comparison of the root mean square error of calibration
(RMSEC) with the absolute error of that sample. If a sample presents
a difference between its reference value (yi) and its estimate (ŷi) larger
than a constant that can vary from two to three times the RMSEC, it
is identified as an outlier (30). In this work this, the constant was
optimized as 3 and the RMSEC was determined as

RMSEC)√∑
i)1

Ic

(yi - ŷi)2

ν
(11)

where ν is the number of degrees of freedom, determined as proposed
by Van der Voet, estimated as (33):

ν) Ic - Ic(1-√ MSEC
MSECV) (12)

where MSECV is mean square error of cross validation estimated with
the calibration samples and MSEC is the square of RMSEC.

Analytical Figures of Merit. Accuracy. This parameter reports the
closeness of agreement between the reference value and the value found
by the calibration model. In chemometrics, this is generally expressed
as the root mean square error of prediction (RMSEP), which is an
approximation of an average prediction error for the validation samples,
obtained as (30)

RMSEP)√∑
i)1

Iv

(yi - ŷi)2

Iv
(13)

where IV is the number of prediction samples. However, RMSEP is a
global parameter that incorporates both systematic and random errors.
Hence, an F-test with the RMSEP of two methods is not appropriate
to compare the accuracy, a better indicator is the regression of found
versus nominal concentrations values and estimation of the linear
regression slope and intercept, including the consideration of the
elliptical joint confidence regions (34).

SensitiVity (SEN). This parameter is the fraction of analytical signal
that is due to the increase of the concentration of a particular analyte
at unit concentration. In inverse multivariate calibration models (such
as PLSR), it is defined as (35, 36):

SEN) 1
bA

(14)

where bA is the vector of the regression coefficients in eq 6 with A
latent variables.
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Analytical SensitiVity (γ). The inverse of this parameter reports the
minimum concentration difference between two samples that can be
determined by the model. Considering that the spectral noise represents
the larger source of error, it can be approximated determined as (36–38)

γ) SEN
δx

(15)

where δx is an estimation of the noise level in the data, which can be
obtained by replicate measurements of a blank sample. In this work
28 replicates were used, and δx was estimated as the square root of
the mean variance in each wavelength.

Prediction InterVals. This parameter can be defined as a range within
which we may assume, with a given degree of confidence, that is, a
certain probability, that the true value for that concentration of the
analyte of interest is included. It can be determined from the application
of t statistics and the estimated standard error of prediction (s(ŷ - yref)),
expressed as (36, 39)

PI(yref)) ŷ( tν,1 - R⁄2s(ŷ- yref) (16)

PI(yref)) ŷ( tν,1 - R⁄2√s2(1+ h+ 1 ⁄ Ic) (17)

where R is the significance level required for the prediction interval,
tV,1-R/2 is the corresponding critical level for Student’s t distribution with
V degrees of freedom, determined as proposed by Van der Voet (33),
Ic is the number of calibration samples, h is the leverage (eq 7), and s2

is an estimate of the standard deviation of the fit error for the training
set, determined as

s2 )MSEC)
∑
i ) 1

Ical

(yi - ŷi)2

ν
(18)

In eq 17 it is considered that mean centering is employed in the data,
when this is not applied the term 1/Ic should be removed from eq 17.

Detection Limit (LOD). Following IUPAC recommendations, the
LOD can be defined as the minimum detectable value of net signal (or
concentration) for which the probabilities of false negative (R) and false
positive (�) are 0.05 (40). It can be determined in multivariate
calibration analogously to univariate calibration (41, 42):

LOD) 3.3 δx|bk|) 3.3 δx
1

SEN
(19)

Equation 19 is the most simple and employed for determination LOD,
it considers that the spectral noise represents the larger source of error.
Therefore, eq 19 provides an overoptimistic value of the LOD. Other
approximations taking into account the leverage and other sources of
errors lead to a more specific LOD sample (43).

Quantification Limit (LOQ). The ability of quantification is generally
expressed in terms of the signal or analyte concentration value that
will produce estimates having a specified standard deviation, usually
10% (40). Following the same consideration of the LOD, the LOQ
can be determined as (41)

LOQ) 10 δx|bk|) 10 δx
1

SEN
(20)

RESULTS AND DISCUSSION

The calibration and validation data sets were composed by
1003 and 378 samples, respectively, selected by the Kennard–
Stone algorithm (24). In this algorithm, the first sample selected
is that one with the largest distance from the center of the data,
and the next sample again presents the largest distance from
the last point, and so on, until completing the number of samples
for the calibration set. The optimum model dimension was
determined by the minimum RMSECV for the calibration
samples, obtained by 10 continuous blocks of cross-validation,

which preset as results five, seven, and five latent variables for
BRIX, POL, and RS, respectively.

Figure 1 shows the variables selected by iPLSR, which
resulted in an interval of 1600–1850 nm. For this variable
selection, the whole spectra was divided in five equally spaced
intervals. The observed RMSECV with the full spectra and the
iPLSR selection were 0.64, 0.85, and 0.34 and 0.63, 0.79, and
0.31 for BRIX, POL, and RS, respectively. However, the PLSR
models built with the selected region presented a lower RMSEP
(Table 1) than that observed with the full spectra 0.28, 0.42,
and 0.26 (23) for BRIX, POL, and RS, respectively, mainly for
POL. Moreover, with this selected region a lower time for
spectra acquisition is necessary. The dominant absorption band
observed in the selected region can be attributed to the first
overtone of C–H stretching, from the sugars. This broad band
is a composite of bands due to different sugars and, hence, it is
not possible to assign it solely to sucrose (25). Nevertheless,
the bands display the absorption in the region where the long
chain C–H molecules should absorb; therefore, they can be used
or selected as an indicator of the sugar content in the juice
samples analyzed.

The calibration set was optimized by elimination of the
samples that presented extreme leverages, extreme unmodeled
residuals in the concentrations (Y) or spectral data (X) (as
described in Outlier Detection in Materials and Methods). For
validation samples, the outlier tests were used based on extreme
leverages and spectral residuals. The outlier test with spectral
residuals based on replicates, described in the ASTM E1655-
00 (21), was also performed. However, for this data set this
outlier test presented the same results as the test using spectral
residuals (eqs 9 and 10). Figures 2 and 3 present the plots
observed using these tests in the calibration and validation
samples, respectively.

Table 2 presents the results for outlier elimination and the
variation of the RMSEC and RMSEP values for the three
properties of interest. It is observed that, for all parameters, when
the outliers identified in the first model were eliminated and
the model was rebuilt, new outliers were identified. ASTM
E1655-00 classifies these occurrences as a “snowballing effect”
(21). In these cases it is advisable to detect and remove the
outliers until the second model. Thus the third model for each
analyte was built and considered optimized with 893, 914, and
891 calibration samples for BRIX, POL, and RS, respectively.
Therefore, the outliers identified in the third models for the three
parameters were not eliminated. After the optimization of the
calibration set, the outlier tests were applied to the validation
set and the outliers eliminated. In practice, the outlier test based
on the residuals in the concentration values (Y) could not be

Figure 1. NIR spectra of sugar cane juice. The interval between 1600
and 1850 nm corresponds to the variables selected by iPLS.
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applied, since in practice the reference value in a real prediction
sample is unknown. However, as these reference values are
available, the test was performed, where 18, 21, and 7 outliers
in Y were identified in the 378 validation samples for BRIX,
POL, and RS, respectively. Cane juice can be considered a
complex sample and, in this sense, there is a probability of
occurrence of errors, which can be due to errors in the estimated
reference values or the PLSR estimated values. On the basis of
the occurrence of these outliers, it is possible to estimate the
probability of occurrence of outliers in Y, which were ap-

proximately equal to 4.8, 5.6, and 1.8%. These estimates can
be considered as an acceptable result, since sugar cane juice is
susceptible to several variations. An alternative to reduce these
probabilities is the measurement of replicates of the samples,
which can increase confidence in the result, but would increase
both time and cost.

Results for the figures of merit are shown in the Table 1.
The RMSEC and RMSEP showed that the estimated values for
the BRIX and POL presented a good agreement with reference
methods. Precision, at the level of repeatability, was assessed
by analysis of three samples with six replicates each, in
measurements made on the same day. The results for BRIX
and POL showed that the repeatability of the multivariate models
was 0.04% juice for both models. These results are better than
those required by regulations for evaluation of the quality of
the cane sugar (0.30 and 0.60% juice, respectively, for BRIX
and POL) (3). For RS, a good result was also observed for
precision, but the RMSEP value suggests the presence of a
relative uncertainty in the model. Considering that the RS values
occur approximately between 0.10 and 3.00, a mean relative
error of 8.6% is observed for the validation samples. For RS
there is no regulation that specifies precision or accuracy and,
as already mentioned, it is not determined in practice, just
estimated by eq 3. It is important to note that the true RMSEP
and RMSEC values for the PLSR analysis are probably better
than their values present in Table 1. This can be explained
because RMSEP and RMSEC values incorporate two uncer-
tainty sources: the one from the PLSR analysis and the error
arising from the method employed to establish the nominal
reference values, which is unknown in this particular application.
If the uncertainty of the nominal reference values is known,
the RMSEP and RMSEC could be corrected by the approxima-
tion proposed by Faber and Kowalski (44), providing only the
average prediction error due the PLSR model.

The sensitivity and analytical sensitivity parameters showed
good results for the three analytes estimated, taking into account
the analytical range of the models. Analytical sensitivity is
simpler and more informative for comparison and to judge the
sensitivity of an analytical method. The inverse of this parameter
permits establishment of a minimum concentration difference,
which is discernible by the analytical method in the range of
concentrations where it was applied, considering a perfect fit
of the model. On the basis of this result, for example, in POL
it is possible to distinguish samples with concentration differ-
ences of 0.24% juice. However, this value is an optimistic
estimate that considers the spectral noise representing the larger
source of error and does not take into account the lack of fit of
the model.

Figure 4 shows the goodness of fit of the models, presented
by plotting the reference values against the estimates for BRIX,
POL, and RS, respectively. The slope and intercept for these

Table 1. Analytical Figures of Merit for PLSR Models for the Properties of Interest

figures of merit BRIX POL RS

accuracya RMSEC 0.27 0.29 0.27
RMSEP 0.28 0.27 0.25

precisiona 0.04 0.04 0.02
sensitivityb 2.3 × 10-3 5.8 × 10-4 5.1 × 10-3

analytical sensitivity-1a 6.2 × 10-2 2.4 × 10-1 2.8 × 10-2

fit slope 0.99 ( 0.01c 0.99 ( 0.01c 0.76 ( 0.04c

intercept 0.15 ( 0.15c 0.10 ( 0.10c 0.19 ( 0.04c

corr coef (R2) 0.992 0.994 0.758
LODa 0.19 0.73 8.40 × 10-2

LOQa 0.62 2.45 0.28

a % juice. b % juice-1. c 99% confidence interval.

Figure 2. Visualization of outlier detection in the calibration set in the
first model for POL. (A) Histogram of leverage values. (B) Plot of spectral
residuals against concentration residuals. The lines show the limits for
outlier detection.

Figure 3. Visualization of outlier detection in the validation set for
POL, after the calibration was optimized. (A) Histogram of leverage
values. (B) Plot of spectral residuals. The line shows the limits for
outlier detection.
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linear fits are also shown in Table 1. On the basis of 99%
confidence intervals, it can be concluded that no constant or
proportional systematic errors were observed for BRIX and
POL, since the intervals contain the expected values of 1 and 0
for slope and intercept, respectively. Also for BRIX and POL
a similar and clearly better goodness of fit was observed than
for RS. For RS, based on the slope and intercept, a significant
systematic error and inferior fit were observed, which might be
caused by a larger variance in the reference values (since it is
difficult to determine the end point of the titration method).
Alternatively it might indicate that this parameter presents some
nonlinear behavior within the spectral data.

Figure 5 shows the plot of the residuals of the calibration
and validation samples for BRIX, POL, and RS parameters,
respectively. The distribution of the errors for BRIX and POL
present an approximately random behavior, while for the RS
parameter some tendency can be observed, which reinforces
the suspicion of some nonlinearity in this parameter.

Limits of detection (LOD) and quantification (LOQ) for the
models show result coherent with the measured quantities and
the RMSEP obtained. On the basis of these values, the PLSR
models are appropriate for BRIX and POL, since the ranges of
these parameters are approximately 8.00–26.00% juice and
3.00–24.00% juice, respectively. For RS, the LOQ obtained
show that the PLSR model is not able to quantify samples with

RS values below 0.28, although the expected range of RS is
0.10–3.00% juice.

Table 3 shows the results of percent of coverage of the
prediction intervals (PIs), which represent the percentage of
samples that have their true value inside the range estimated
by the confidence intervals at probabilities of 99.0, 95.0, and
90.0%. Results showed that coverage for the PIs were ap-
propriately close to those expected theoretically, where the
largest difference observed was 4.5% for BRIX. Table 3 also
shows the mean PIs estimated for the PLSR models, which
presents an acceptable uncertainty for BRIX and POL. For
example, considering the 95% PIs for POL, the value 0.58
indicates that for a sample with a concentration of 20.0% juice,
this value must be between 19.42 and 20.58% juice. Figure 6
shows the error bars of the PIs for the validation samples for
POL, which illustrates the PIs obtained. For the RS parameter,
the calculated PIs were incompatible with the concentration

Table 2. Results for the Number of Outliers Identified in Each Test for Each Property of Interest and the Variation of the rmsEC and rmsEP Values
Observed

no. of outliers detected in each test

modelsa samples leverage X residuals Y residuals total RMSEC RMSEP

Brix M1 1003 15 42 14 66 0.63 0.77
Brix M2 937 14 22 13 44 0.31 0.78
Brix M3 Opt 893 5 12 13 28 0.27 0.78
BrixVal 378 2 19 18 39 0.27 0.78
BrixVal Opt 339 0 0 0 0 0.27 0.28
Pol M1 1003 26 21 17 53 0.78 0.91
Pol M2 950 13 10 15 36 0.37 0.92
Pol M3 Opt 914 12 2 3 16 0.29 0.92
PolVal 378 6 4 21 26 0.29 0.92
PolVal Opt 352 0 0 0 0 0.29 0.27
RS M1 1003 21 45 11 69 0.31 0.30
RS M2 934 14 23 6 43 0.28 0.31
RS M3 Opt 891 5 8 1 14 0.27 0.32
RSVal 378 2 22 7 28 0.27 0.32
RSVal Opt 350 0 0 0 0 0.27 0.25

a M, model; Opt, optimized; Val, validation set.

Figure 4. Reference values against the values estimated by the PLSR
model for BRIX (A), POL (B), and RS (C), respectively: calibration samples
(O) and validation samples (+).

Figure 5. Reference values for BRIX (A), POL (B) and RS (C),
respectively, against the absolute error: calibration samples (O) and
validation samples (+).

Table 3. Percentage of Coverage and Mean Prediction Intervals (PIs)
Obtained for Each Parameter for Three Different Probability Levels

BRIX (%) POL (%) RS (%)

probability level (%) recovery PI recovery PI recovery PI

99.0 96.4 (0.70 98.6 (0.76 98.6 (0.70
95.0 90.5 (0.53 96.0 (0.58 95.1 (0.53
90.0 86.9 (0.45 93.5 (0.49 91.9 (0.44
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range studied, which agrees with the results obtained for LOQ,
and indicates that the proposed methodology based on NIR is
not suitable for RS determination.

Figure 7 shows the results obtained for the RSest, based on
eq 3. A significant dispersion can be observed and a tendency
in the absolute errors, similar to the results obtained with the
PLSR model. The RMSEP calculated based on the RSest and
the reference values (obtained by the titration method) present
a value of 0.38, which is significantly larger than that obtained
with the PLSR model. Figure 8 shows the elliptical joint
confidence regions; for BRIX and POL it was observed that
the ellipses contain the ideal point (1, 0), for slope and intercept
respectively, showing that the reference method and PLSR
results do not present a significant difference with 99% of
confidence. For RS, it was observed that both PLSR and RSest

results do not contain the ideal point; hence both differ
significantly from results of the reference method. However,
the ellipse for the PLSR results presents a lower size and is
nearest of the ideal point, showing that the PLSR results are in
a better agreement than the RSest.

Determinations of BRIX, POL, and RS parameters based on
NIR spectra and multivariate calibration were built and validated
by determination of the figures of merit, using a representative
number of samples, where feasible, and acceptable results for
BRIX and POL were obtained, which can be considered

validated according the regulations followed by the sugar cane
industry (3) and ASTM E1655-00 (21).

The prediction errors obtained for BRIX and POL were
smaller than those required by the regulations (3) and the
estimated confidence limits for prediction samples showed good
agreement with the expected probability of coverage. The
models showed a large sensitivity capacity, differentiating
samples with a small difference of concentration. The values
for accuracy, precision, and other figures of merit presented
promising results, indicating that the models developed for near-
infrared spectroscopy for BRIX and POL can be safely used in
the sugar cane industry as an alternative to refractometry and
lead clarification for polarization measurements (standard
methods for BRIX and POL, respectively). For the RS param-
eter, compared to the standard titration method, the absolute
errors obtained for the NIR method were smaller than the errors
found using eq 3. However, despite of the lack of regulations
for this parameter, these errors and the estimated figures of merit
for the multivariate model demonstrate that neither the PLSR
model based on the NIR spectra nor eq 3 can be indicated for
realistic determinations of RS in sugar cane juice. For this
parameter, a viability study must be performed to optimize both
the reference method and the NIR methodology.
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